
AFRL-IF-RS-TR-2006-23
Final Technical Report
January 2006

LANGUAGE MEASURE FOR ROBUST OPTIMAL
CONTROL

The Pennsylvania State University

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. M414

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public, including
foreign nations.

 AFRL-IF-RS-TR-2006-23 has been reviewed and is approved for publication

APPROVED: /s/

CARL A. DEFRANCO
Project Engineer

 FOR THE DIRECTOR: /s/

 JAMES W. CUSACK
 Chief, Information Systems Division
 Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
JANUARY 2006

3. REPORT TYPE AND DATES COVERED
Final Sep 2001 – Sep 2005

4. TITLE AND SUBTITLE
LANGUAGE MEASURE FOR ROBUST OPTIMAL CONTROL

6. AUTHOR(S)

Asok Ray, Travis Ortogero

5. FUNDING NUMBERS
C - F30602-01-2-0575
PE - 62301E
PR - M414
TA - 00
WU - 01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
The Pennsylvania State University
101 Technology Center
University Park Pennsylvania 16802-7000

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFSA
3701 North Fairfax Drive 525 Brooks Road
Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2006-23

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Carl DeFranco/IFSA/(315) 330-3096/ Carl.DeFranco@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
We present the basic language measure algorithms with some preliminary definitions of terms used. Properties of the measure are
presented accompanied by proofs. We then describe in detail the algorithm for generating an optimal controller with respect to the
language measure, and then prove that the generation is indeed optimal. Next we describe our experimentation regarding extracting
language measure parameters from real or simulated modeled scenarios. From this experiment we obtain a constructive method for
getting these parameters that can be applied to other types of situations other than MICA situations, thereby validating the language
measure as a viable method of measurement. Example controllers and plant models are then used to illustrate the robustness of the
measure with respect to small perturbations of its input parameters, and how the optimal algorithm generates results that improve
upon the non-optimal measurements.

15. NUMBER OF PAGES
17

14. SUBJECT TERMS
Mixed initiative; robust control; UAV; command and control; formal language.

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

 i

Table of Contents

1.0 Brief Review of the Language Measure .. 1

2.0 Optimal Control Using the Language Measure ... 3

3.0 Experimentation... 5

 4.0Conclusions.. 13

 5.0 References.. 13

List of Figures

 Figure 1. Sample Experiment Scenario ... 7

List of Tables

 Table 1: Transition Table for Plant Model .. 8
 Table 2: Value Stabilization... 9
 Table 3: π~ Matrix .. 9
 Table 4: Results of the 20 measurements .. 11
 Table 5: Results from optimal algorithm... 12

 1

1.0 Brief Review of the Language Measure

Let the plant behavior be modeled as a DFSA),,,,(mii QqQG δΣ≡ where Q is the finite set of
states with nQ = excluding the dump state ([RW87] and [KG95(1)]), if any, and Qqi ∈ is the
initial state; Σ is the (finite) alphabet of events; *Σ is the set of all finite-length strings of events
including the empty string ε ; the (total) function of QQ →Σ×:δ represents state transitions and

QQ →Σ× *:*δ is an extension of δ ; and QQm ⊆ is the set of marked states.
Definition 1: A DFSA iG , initialized at Qqi ∈ , generates language { }QsqsGL ii ∈Σ∈≡),(*:*)(δ
and marked sublanguage { }miim QsqsGL ∈Σ∈≡),(*:*)(δ .

The language)(iGL is partitioned into the non-marked language)()()(imii
o GLGLGL −≡ and

the marked language)(im GL , consisting of event strings that, starting from the initial state Qqi ∈ ,
terminate at one of the non-marked states in mQQ − and one of the marked states in mQ ,
respectively. The set mQ of marked states is partitioned into +

mQ and −
mQ , where +

mQ contains all
good marked states that we desire to reach and −

mQ contains all bad marked states that we want to
avoid, although it may not always be possible to avoid the bad states while attempting to reach
the good states. The marked language)(im GL can be further partitioned into)(im GL+ and)(im GL−
consisting of good and bad strings that, starting from the initial state iq , terminate to +

mQ and −
mQ ,

respectively.

Now we construct a signed real measure ()∞∞−≡ℜ→Σ ,2: *µ for quantitative evaluation of
every event string *Σ∈s based on state-based decomposition of)(iGL into null (i.e.,)(i

o GL),
positive (i.e.,)(im GL+), and negative (i.e.,)(im GL−) sublanguages of)(iGL .

Definition 2: The language of all strings that start at state Qqi ∈ , and terminate at state Qq j ∈ , is
denoted),(ij qqL . Thus, }),(*:)({),(jiiij qsqGLsqqL =∈≡ δ .

Definition 3: The characteristic function that assigns a signed real weight to state-partitioned
sublanguages is defined as: (){ }]1,1[,:,: −→∈QqpqpLχ such that

i

m

m

m

j q
Qpif
Qpif
Qpif

q oftindependen
]1,0(

}0{
)0,1[

)(

⎪
⎪
⎩

⎪⎪
⎨

⎧

∈

∉
∈−

∈
+

−

χ

Definition 4: The event cost is conditioned on the DFSA state at which the event is generated,
and is defined as)1,0[*:~ →×Σ Qπ such that ,Qq j ∈∀ Σ∈∀ kσ , *,Σ∈∀s

• [)1,0~][~ ∈≡ jkjk q πσπ ; 1~ <∑k jkπ ;

• 0][~ =jk qσπ if),(kjq σδ is undefined;

• 1][~ =jqεπ ;

•)],([~][~][~
kjjkjk qsqqs σδπσπσπ = .

 2

 Now we define the measure of any sublanguage of the ()iGL in terms of the signed the
characteristic function χ and the non-negative event cost π~ .

Definition 5: The signed real measure µ of a singleton string set *2)(),(}{ Σ∈⊆ iij GLqqLs is:
)|(~)(})({ ij qsqs πχµ ≡),(ij qqLs ∈∀ .
The signed real measure of),(ij qqL is defined as:

 () ()⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∑≡

∈),(
}{),(

iqjqLs
ij sqqL µµ

The signed real measure of a DFSA iG , initialized at the state Qqi ∈ , is defined as:
 =≡))((ii GLµµ ().),(∑ j ij qqLµ

Definition 6: The state transition cost of the DFSA is defined as a function)1,0[: →×QQπ such
that ,, Qqq kj ∈∀ jk

kqjq
jjk qqq πσππ

σδσ
∑ ≡=

=Σ∈),(:
)(~)(and 0=jkπ if ∅=Σ∈)},(:{ σδσ jq . The

nn× state transition cost matrix, denoted as Π -matrix, is defined as:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=Π

nnnn

n

n

πππ

πππ
πππ

L

OM

L

L

M

21

22221

11211

Proposition 1: Given a state transition cost matrix nn×ℜ∈Π , the operator][Π−I is invertible and
the bounded linear operator 0][1 ≥Π− −I where the matrix inequality is implied elementwise.

Proof: It follows from Definitions 4 and 6 that:

θπ −=∑≡Π ∞ 1max j ij
i

 where)1,0(∈θ

Then, 1][−Π−I is invertible and is a bounded linear operator with norm 11 ||][|| −
∞

− ≤Π− θI [NS82,
p. 431].

Using Taylor series expansion, ∑ Π=Π−
∞

=

−

0

1][
k

kI . Each element of Π is non-negative, so each

element of kΠ is also. Thus, 0][1 ≥Π− −I elementwise. ■

 Wang and Ray [WR02] and Ray and Phoha [RP02] have shown that the measure
))((ii GLµµ ≡ of the language)(iGL can be expressed as: ∑ += j ijiji χµπµ where)(ii qχχ ≡ .

Equivalently, in vector notation: Χ+Π= µµ where the measure vector T
n][21 µµµµ L≡ and the

characteristic vector T
n][21 χχχ L≡Χ . By Proposition 1, the measure vector µ is uniquely

determined as: ΧΠ−= −1][Iµ .

 3

2.0 Optimal Control Using the Language Measure

We now present the theoretical foundations of the unconstrained optimal control of discrete
event systems [SL98]. Let },,,{ 10 NSSS L≡S be the finite set of all supervisory control policies
for the open loop plant automaton G where 0S is the null controller (i.e., no disabled events),
i.e.)()/(0 GLGSL = . Therefore the controller cost matrix plantS Π≡Π=Π 00)(is the Π -matrix of
the open loop plant automaton G . For a supervisor },,2,1{, NiSi L∈ , the control policy
selectively disables certain controllable events, and therefore the following (elementwise)
inequality holds: 0)(Π≤Π≡Π kk S and)()/(GLGSL k ⊆ S∈∀ kS .

Definition 7: For any supervisor S∈S and any measure vector nℜ∈ν , the affine operator
nnST ℜ→ℜ:)(is defined as: Χ+Π= νν)()(SST

Proposition 2: S∈∀S ,)(ST is a contraction operator, and there exists a unique measure vector
)(Sµ such that)()()(SSTS µµ = .

Proof: Since 0)(0 Π≤Π≤ S elementwise, and 0Π is a contraction operator,)(SΠ is also a
contraction operator. Since Χ is a constant vector,)(ST is also a contraction. Hence, ∃ a
unique fixed point)()()(SSTS µµ = . ■

Corollary 1 to Proposition 2: The fixed point of the contraction operator)(kST is:
ΧΠ−= −1][kk Iµ where)(kk Sµµ ≡ and)(kk SΠ≡Π .

Proof: The unique fixed point)(kSµ of)(kST satisfies the identity Χ+Π=)()()(kkk SSS µµ . As
)()(0 0SS k Π≤Π≤ elementwise, we have 1||)(||)(0 <Π≤Π ∞∞

SS k . Hence, the operator 1)]([−Π− kSI

is bounded. ■

Corollary 2 to Proposition 2: The operator][kI Π− has a real positive determinant, i.e.,
0][>Π− kIDet .

Proof: Eigenvalues of the real matrix kΠ are located within the unit circle and they appear as
real or complex conjugates. Therefore, eigenvalues of][kI Π− have positive real parts. So,

][kIDet Π− is real positive. ■
Proposition 3: Let k

n

k
j l

Ll
µµ min

},,2,1{∈
= . If 0≤k

jµ then 0≤jχ and if 0<k
jµ , then 0<jχ .

Proof: The DFSA satisfies the identity j
n

k
j

k
j χµπµ +∑=

∈ },,2,1{ Ll
ll that leads to the inequality

jjj
k
j χµπµ +∑≥)(

l
l ⇒ jjj χµπ ≥∑− l

l
l)1(. The proof follows from 0)1(>∑−

l
ljπ (see Defs. 3, 4).

 ■
Corollary 1 to Proposition 3: Let k

n

k
j l

Ll
µµ max

},,2,1{∈
= . If 0≥k

jµ , then 0≥jχ and if 0>k
jµ , then

0>jχ .

Proof: The proof is similar to that of Proposition 3. ■

 4

Proposition 4: Given plantS Π≡Π=Π 00)(and ΧΠ−≡ −1][kk Iµ , let 1+Πk be generated from kΠ for

0≥k as follows: },,,2,1{, nji L∈∀ thij element of 1+Πk is modified as:
⎪
⎩

⎪
⎨

⎧

≤

=

≥
+

k
ij

k
ij

k
ij

k
ij

π
π
π

π 1

0
0
0

<

=

>

k
j

k
j

k
j

if
if
if

µ
µ
µ

 and

kk ∀Π≤Π 0 . Then, kk µµ ≥+1 elementwise and equality holds if and only if .1 kk Π=Π +

Proof: () ΧΠ−−Π−=− −+−++ 11111][][kkkk IIµµ

 = () ΧΠ−Π−−Π−Π− −+−+ 1111][][][][kkkk IIII

 = () kkkkI µΠ−ΠΠ− +−+ 111][
Defining the matrix kkk Π−Π≡∆ +1 , let the thj column of k∆ be denoted as k

j∆ . Then, 0≤∆k
j if

0<k
jµ and 0≥∆k

j if 0>k
jµ , and the remaining columns of k∆ are zero vectors. This implies:

0≥∑ ∆=∆ k
j

j

k
j

kk µµ . Since kk ∀Π≤Π 0 , 0][11 ≥Π− −+kI elementwise, we

have. kkkkkI µµµ ≥⇒≥∆Π− +−+ 111 0][. For 0≠k
jµ and k∆ as defined above, 0=∆ kk µ if and only

if 0=∆k . Then, kk Π=Π +1 and kk µµ =+1 . ■

Corollary 1 to Proposition 4: Let 0<k
jµ . Let 1+Πk be generated from kΠ by disabling

controllable events that lead to the state jq . Then, 01 <+k
jµ .

Proof: Since only thj column of][1+Π− kI differs from that of][kI Π− and the remaining
columns are the same, the thj row of the cofactor matrix of][1+Π− kI is the same as that of the
cofactor matrix of][kI Π− , we have k

j
kk

j
k IDetIDet µµ][][11 Π−=Π− ++ . By Corollary 2 to

Proposition 2, both determinants are real positive. ■

Remark 1: In Proposition 4, some elements of the thj column of kΠ are decreased (or
increased) by disabling (or re-enabling) controllable events that lead to states jq for which

0<k
jµ (or 0≥k

jµ). ■

Proposition 5: Iteration of the algorithm in Proposition 4 leads to an optimal cost matrix *Π that
maximizes performance vector ΧΠ−≡ −1**][Iµ elementwise.

Proof: Let there be another cost matrix 0~
Π≤Π for which ΧΠ−≡ −1]~[~ Iµ . We will show that

.*~ µµ ≤ Starting with *]~[]~[*~ *1 µµµ Π−ΠΠ−=− −I , we rearrange the elements of the *µ -vector
such that T

n]|[
0

**
1

0

**
1

*
43421

L
43421

L ll

<

+

≥

= µµµµµ where 0≥kµ and no controllable event leading to states

kq has been disabled; and 0<kµ for nk ,,2,1 Lll ++= where all controllable events leading to
states kq , lL,,2,1=k , have been disabled. The cost matrices Π

~ and *Π are also rearranged by
columns in the order in which the *µ -vector is arranged.

 5

The algorithm in Proposition 4 keeps elements in the first l columns of *Π the same as those
of the (open loop plant’s) 0Π -matrix and decreases the elements in the last)(l−n columns to the
maximum permissible extent by disabling all controllable events. In contrast, the columns of Π

~
are reduced by an arbitrary choice. Therefore, the)~(*Π−Π -matrix, whose first l columns are
non-positive and last)-(ln columns are non-negative, yields:

1])[]~[~ µµµ 0cols -(n last|0 cols firstI ≥≤Π−=− − ll where T
n]|[

0

**
1

0

**
1

*
43421

L
43421

L ll

<

+

≥

= µµµµµ .

Since 0]~[1 ≥Π− −I elementwise, we conclude that

0]~[~

0

1
*

0

1
*

0

1* ≤⎟
⎟
⎠

⎞
∑ ⋅+⎜

⎜
⎝

⎛
∑ ⋅Π−=−

≤

+=

≤

=≥

−

44 344 2144 344 21
43421

l

l n

j
jj

j
jj ColColI µµµµ

Therefore, *~ µµ ≤ for any choice of Π
~ . ■

Proposition 6: The control policy induced by the *Π -matrix is unique in the sense that the
controlled language is most permissive (i.e., least restrictive) among all controller(s) having the
best performance.

Proof: Disabling controllable event(s) leading to a state jq with performance measure 0* =jµ
does not alter the performance vector *µ . The optimal control does not disable any controllable
event leading to a state with zero performance. Thus, the control policy induced by the *Π -
matrix is most permissive, among all controllers with equal performance *µ . ■

Remark 2: Propositions 5 and 6 suffice to conclude that the *Π -matrix yields the most
permissive controller with the best performance *µ . The control policy is realized as follows:
• All controllable events leading to the states jq where 0* <jµ are disabled;

• All controllable events leading to the states jq where 0* ≥jµ are enabled. ■

3.0 Experimentation

The experimentation for our research was designed to resolve the issue of determining the
π~ values of a given plant model for a system. It is important to be able to mathematically or
experimentally determine these values, as opposed to their being set by hand, because in general
it is impossible to properly assign by hand probabilities for uncontrollable events (it is possible
to assign the π~ values for controllable events, since a controller can choose how often they wish
such events to occur). For typical MICA scenarios, we used the Boeing Simulator to generate
the necessary data to determine the π~ values.

The simulation runs generates situations where events occur. Specifically, we implemented an
event generator that examined the variables of the system and determined, from those variables
and the current state of the system according to the plant model, what discrete event is occurring
in the system. Since the Boeing simulator is a rich simulation environment, we can use it to
determine the plant model's π~ values.

 6

 Experiment Description

The basis for the experiment is this hypothesis: Hypothesis: π~ values can be determined
through event generation and statistical analysis of those events occurring over the course of a
large number of simulated or actual runs.

The goal of the experiment is to show that the experimental data for these π~ values converges to
within ε of its actual value with probability δ. The experimental procedure was as follows:

 1. Identify the states and events (and thus the transition table) for the system's plant model.

 2. Implement event generators that take the simulator/experiment data and determine if one
of the previously defined events have occurred. Then update the plant model to the new state
designated by the event that occurred and the previous state.

 3. Tally event occurrences in a π~ -like matrix. That is, an entry in an m * n matrix is
incremented whenever the corresponding event occurs at the corresponding state.

 4. Sum the values of a row i and then divide each element in i by that sum. Scale this
number by (1-θ) for some pre-determined value of θ. The resulting matrix contains the π~
values.

 5. Repeatedly run experiment to continue adding to the event occurrence matrix. Over the
course of numerous experiment runs, the resulting π~ value matrix from these runs should
converge.

In order to conduct the experiment, we implemented event generators that would determine, at
each tick, whether or not an event in the set of possible events given the current state had
occurred. For example, a event generator for a Damaged event would trigger if the simulator's
status for a given platform indicated that the platform was damaged. Each event required an
event generator. Once these generators were developed, we could conduct the experiment.

 Simulation
The experiment scenario was that of two fighters and five targets. Each fighter had the same
plant model, and each fighter's events were used in the tallying of events in the event occurrence
matrix. Targets were randomly placed on the map and fighters emerged from a location
representing their base on the map (the southeast corner). See Figure 1.

 7

Figure 1. Sample Experiment Scenario

The fighters would emerge randomly from the base, and upon detection of a target, fly toward it
to engage, and then decide, based upon uncontrollable events and preset controllable event
probabilities, what actions to take. The fighter's processes continued in this manner until they
were destroyed, all the targets were destroyed, or an upper limit on time for each run was
reached.

Plant Model

The experiment plant model had these states:

1. AbortMission – fighter has stopped attempting combat/flight toward combat
2. AtBase – fighter is at base
3. Attack – Fighter has attacked or is attacking target
4. AttackWithDamaged – fighter is in combat and is attacking (again) with damages to itself
5. AttackWithLowFuel – fighter is in combat and is attacking (again) with low fuel
6. DamagedBeforeAttack – fighter is not in combat and has received damage
7. DamagedDuringAttack – fighter is in combat and has received damage
8. EnRoute – fighter is flying toward target/waypoint
9. LowFuelBeforeAttack – fighter is not in combat and is nearing insufficient fuel to return to

base
10. LowFuelDuringAttack – fighter is in combat and is nearing insufficient fuel for returning to

base
11. MidairRefuel – fighter is attempting to refuel from a tanker
12. NearTg – Fighter is within range of target
13. NoWeapons – fighter has no weapons
14. SelfDestroyed – fighter is destroyed
15. TargetDestroyed – fighter's current target has been destroyed

 8

The following events were recognized by the generators, where U stands for uncontrollable, and
C for controllable:

a. attack (C) – fighter decides to attack its current target
b. damaged (U) – fighter is damaged
c. die (U) – fighter has been destroyed
d. flee (C) – fighter told to flee to base
e. lowFuel (U) – fighter near insufficient fuel to return to base, given current position
f. midairRefuel (C) – fighter decides to refuel from a tanker
g. nearTg (U) – fighter is near its target
h. noWeapons (U) – fighter has used all available weapons (includes losing weapons to

damage, jamming, etc.)
i. reachBase (U) – fighter reaches base
j. refuelCompleted (U) – fighter has finished a midair refueling
k. replan (U) – fighter has to change its course due to uncontrollable event
l. tgDestryd (U) – fighter's target has become destroyed

Transition Table
The entries of a transition table indicate the events that are possible from each state. For
example, from state 1 (atBase), only one event is possible, replan, and that event takes the model
to state 2 (EnRoute). Table 1 is the transition table for the plant model.

Table 1: Transition Table for Plant Model

 a b c d e f g h i j k l

1 14 2
2 8
3 3 7 14 1 10 13 8 15
4 4 14 1 13 8 15
5 5 14 1 13 8 15
6 14 1 7 8
7 4 14 1 8
8 6 14 9 12 13 8
9 14 1 11 10 8

10 5 14 1 11 8
11 14 8
12 3 14 13 8 15
13 14 1
14
15 14 8

Results
After several hundred simulation runs, the entries with frequently occurring events began to
stabilize near a particular value. For example, the last few π~ values for the transition <Attack,
attack, Attack> (from the Attack state, choose to attack) are shown just below in Table 2. The
resulting π~ matrix, prior to any scaling, is in Table 3 (figures may not sum to 1 due to
rounding).

 9

Table 2: Value Stabilization

Note that some entries are 0, despite their having potential for having a transition occur there,
according to the transition table. There are a few possible reasons for this result. One is that not
enough runs might have been conducted on the model to get enough situations for those
transitions to occur. Another more likely reason, is that the logic of the fighters do not allow the
fighters to reach those situations, which means that those transitions are a part of a inaccurate
modeling of the system at hand. If the fighters, or the plant model, were modified to better
model the actual situation, such anomalies would be reduced. Thus this method establishes
π~ values for the available transitions, and it also points out transitions which may not actually
have a counterpart in the real scenario, be it from fighters whose logic precludes those situations
from happening, or otherwise. The difficulty in creating a plant model for a given system makes
such capability in this method algorithm a bonus. After refining the fighter model, plant model,
and scaling, we have a usable π~ table, on which we can use the language measure.

Table 3: π~ Matrix

0.439537
0.439553
0.43964
0.439727
0.439835
0.439878
0.439864
0.439893
0.439879
0.439843

 a b c d e f g h i j k l
1 .09 .91
2 1
3 .44 .01 .02 .1 .006 .11 .01 .3
4 0 0 0 0 0 0
5 .41 .05 .11 .19 0 .24
6 0 0 .64 .36
7 0 0 .69 .31
8 .003 .003 .1 .83 .02 .04
9 0 .32 .67 .01 0

10 .58 0 .16 .18 .08
11 .27 .73
12 .99 .006 .003 0 0
13 .001 .99
14
15 0 1

 10

Experiment 2: Robustness of measure and optimality algorithm

The scenario developed for the simulation experiments in this setting deployed a fighter airplane
against a target that attempts to defend itself by shooting down the fighter. The experiment was
conducted using four different but similar plant models and four increasingly aggressive
controllers [RW87]. A nominal plant model was developed representing a single fighter aircraft
on a mission to destroy a single defensive target (e.g., an anti-aircraft artillery site), as seen
previously in prior presentations. From this plant, 3 other models were created through small
variations in the π~ values of transitions and X values of the marked states. These variations
allow the experiment to examine the language measure's validity, and utilize the X vector feature
of assessing the relative worth of marked states. The four models of the plant aircraft are
described below:

Plant model 1: The nominal plant model, where the values of the π~ matrix were assigned by
their likelihood of occurrence based on limited available data. The X values were set to equal
magnitude weights for the two main outcomes of fighter destruction and target destruction.
Specifically, X values assigned to these states: aborting the mission (-.05), target destruction (1),
and fighter destruction (-1.0). All other states, being unmarked, have a X value of zero.

Plant model 2: Same X values as in Plant model 1, but the π~ values corresponding to the
controllable events at each state are equal and their sum unchanged. The remaining π~ values
are not altered.

Plant model 3: Same π~ values as those in Plant model 1, but different X values to represent the
preference of preserving the fighter over target destruction. Specifically, target destruction has a
X value of .95, while fighter destruction has a X value of -1. The remaining X values are the
same as those in Plant model 1.

Plant model 4: Same π~ values as in Plant model 2, and X values as in Plant model 3.

The differences between the values of the various plant models are small, between 0.01 to 0.2.
The states and events used to represent the fighter-target scenario are similar to the ones from the
π~ value generation experiment.

Four supervisors were designed from four simple specification sets, which are described below
in order of increasing aggressiveness:

Specification set 1: Only attack if there are no problems with the fighter. That is, no damage
(major or minor), and ample fuel. Fighter shall not start attacking if there are any problems, and
if a problem (including running low on fuel) develops during attack, the mission will be aborted.
Mid-air refueling is not allowed during attack.

Specification set 2: Attack at least once, but then abort if damaged at all. Continue to attack
otherwise. If the fighter already has damage, it will attack once and then abort. If the fighter is
undamaged when attack begins, it shall abort once damage has taken place. No specifications
with respect to fuel levels.

 11

Specification set 3: Abort the attack if the fighter has major damage, and attack at most twice
with minor damage,. Otherwise attack until the target is destroyed or weapons have run out. (A
new state is added to handle counting in the case of minor damage incurred.) If the fighter
already has major damage before attacking, it will abort and not attack. If the fighter incurs
major damage while attacking, the mission shall be aborted. If the fighter has minor damage
prior to attacking, it will attack at most twice and then abort. If the fighter incurs minor damage
during attack, it will attack once more, then abort. No restrictions based on fuel level.

Specification set 4: Attack regardless of problems until target is destroyed or all appropriate
weapons have been used. Abort if all available weapons have been used.

Supervisors were designed for the open-loop plant models based on the above four specifications
and were labeled according to their specification set number.

For controllers 1, 2, and 4, supervisor construction and application reduces to simple removal of
states and transitions from the open-loop plant model. For controller 3, an additional state was
added to handle the counting required when considering what the fighter should do when it has
incurred minor damage. If it is not obvious how to add/delete states and events to/from the open
plant model when applying a controller, product construction is used and the language measure
is then applied to that construction.

Results

Language measurements were carried out using each of the four controllers on each of the four
plants, as well as the unsupervised version of the plants, for a total of 20 measurements. Table 4
lists the results of these measurements. The No Controller row shows the language measure of
the open plant itself, without a controller being applied to it. Those figures are the baseline for
comparison of controllers that are applied to those models. Controllers that measure less than the
open plant model's measure are considered to be bad or useless controllers (and thus their
specifications detrimental): it would be better to attempt the scenario without those controls
being applied, for there is a better chance of success according to the measure.

Table 4: Results of the 20 measurements

 Open Plant Models
No Control .09898 .1328 .07544 .106
Controller 1 .0797 .104 .0667 .08972
Controller 2 .07698 .09547 .06425 .08054
Controller 3 .10311 .13435 .08422 .1131
Controller 4 .09424 .1175 .08167 .1034

According to the table, controller 3 was the only controller that managed to improve upon all
four of the open-loop plant models. As such it consistently was the best control specifications to
use for the scenario of the four that were proposed. The consistency is important, because the
measure's validity depends on being consistent even over small perturbations of plant models
like the changes that were in this experiment. Furthermore, the order of goodness according to
the measure was also consistent across the four varieties of plant models: controller 3 was best,

 12

followed by 2, 1, and lastly 4. This observation further establishes the consistency of the
measure. If the ranking of controllers could be permuted when they differed by non-trivial
amounts as the result of small perturbations in the plant model, the measure would lose validity.

Controllers 1 and 4 were both bad strategies, they consistently yielded measures worse than that
of the unrestricted plant, while the performance of controller 2 was mixed; its measures were so
close to those of the original plant that its measure compared to the original plant was very
sensitive to the changes of the X vector and Π-matrix. The all-or-nothing strategies failed to
rank as highly as the strategies that were middling in their aggressiveness, controller 1 being too
risk averse and controller 4 allowing for too much risk. The results of the experiment suggest
that over the course of repeated runs of this scenario, using the range of parameter perturbation
in this experiment), controller 3 would yield the highest percentage of successful runs, followed
by 2, 1 and 4.

Now we compare these results to those of applying optimal control onto all of the previous
measurements in Table 5.

Table 5: Results from optimal algorithm

w/ Optimal Open Plant Models
Open Plant .12298 .16143 .10286 .13618
Controller 1 .0797 .104 .0667 .08972
Controller 2 .09289 .11545 .08132 .10219
Controller 3 .10564 .13573 .08844 .11365
Controller 4 .09514 .11847 .08257 .10438

As expected, unconstrained optimal control yields the best results. Controller 1's performance is
unchanged after optimization, which means that it was already optimal for the set of
specifications it was covering. Controller 2's performance has a significant increase, instead of
being the worst, it is now better than controller 1.

 13

4.0 Conclusions

With the process of determining π~ values from the first experiment, we have enabled the
language measure to be applicable on any system that can be represented as a discrete event
plant. The Boeing Simulator was used as a model of the real world, and events can be extracted
from it, or other simulations, or even the real world, through the process detailed above. The
first experiment helps to shape the plant model and also provides accurate π~ values to use with
that plant model. Given those results, one can apply the language measure on control
specifications to determine which specifications are best. Alternatively one can use the
optimality algorithm to find the best set of enabled and disabled controllable events under the
given set of specifications for the controller.

5.0 References

[KG95(1)] R. Kumar and V.K. Garg, Modeling and Control of Logical Discrete Event Systems,
Kluwer Academic, 1995.

[NS82] A. W. Naylor and G.R. Sell, Linear Operator Theory in Science and Engineering,
Springer-Verlag, New York, 1982.

[RP02] A. Ray and S. Phoha, “A language measure for discrete-event automata,” International
Federation of Automatic Control (IFAC) World Congress b’02, Barcelona, Spain, 2002.

[RW87] P.J. Ramadge and W. M. Wonham, “Supervisory control of a class of discrete event
processes,” SIAM J. Control and Optimization 25 (1987), no. 1, 206-230.

[SL98] R. Sengupta and S. Lafortune, “An optimal control theory for discrete event systems,”
SIAM J. Control and Optimization 36 (1998), no. 2, 488-541.

[WR02] X. Wang and A. Ray, “Signed real measure of regular languages,” American Control
Conference, Anchorage, Alaska, 2002.

